
Wikiprint Book

Title: Rejestry

Subject: eDokumenty - elektroniczny system obiegu dokumentów, workflow i CRM -
DeployerGuide/AdvancedConfiguration/CustomRegisters

Version: 103

Date: 02/04/26 15:51:23

WikiPrint - from Polar Technologies

2

Table of Contents

Rejestry 3
Tworzenie rejestru 3
Tworzenie raportu 3

Sumowanie oraz grupowanie 3
Ważne tabele 3
Rejestr jako lista 4

w dokumencie 4
w zadaniu 4
w sprawie 4
dodatkowe opcje 4

Podrejestr w rejestrze 4
Definicja rejestru - parametry 5

Walidacja wpisu w rejestrze 5
Konfiguracja wyglądu okna dialogowego 5

Definicje pól dla rejestru 5
Formatowanie pól i formatki 5
Akcje (javascript) 5
Walidacja wartości w polach 6
Ustawianie wartości domyślnych 6
Pole jako lista wyboru 6
Listy połączone 7
Pole tekstowe typu HTML 7
Pole tekstowe typu ComboBox 7
Pole typu Lookup 7
Pole typu wybór z drzewka 7
Pole jako status 8
Disablowanie pola 8
ToolBar 8

Filtrowanie listy 9
Liczniki 9
Modyfikacje JSON bezpośrednio w bazie danych 9
Uprawnienia do rejestrów 9
Migracja rejestrów z innej bazy 10
Indywidualna zakładka w Rejestrach 10
Przydatne konstrukcje i zapytania 11

WikiPrint - from Polar Technologies

3

Rejestry

Tworzenie rejestru

Aby założyć rejestr w module rejestry musimy rozpocząć od założenia tabeli. Tabelę tworzymy za pomocą komendy create table.

Przykład założenia tabeli

-- Table: cregisters.creg_r_imi

-- DROP TABLE cregisters.creg_r_imi;

CREATE TABLE cregisters.creg_r_imi

(

 nazwa character varying(250),

 ulica character varying(80),

 budnr character varying(10),

 kwota double precision

)

INHERITS (cregisters.register_entry)

WITH (

 OIDS=FALSE

);

ALTER TABLE cregisters.creg_r_imi OWNER TO edokumenty;

GRANT ALL ON TABLE cregisters.creg_r_imi TO edokumenty;

GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE cregisters.creg_r_imi TO http;

Uwaga ! Pola używane przez eDokumenty są dziedziczone - nie trzeba ich zakładać. Są to pola:

id____, cregid, uid___, is_del, adduid, adddat, lm_uid, lm_dat, doc_id, prc_id, evntid, fkelid, cre_id, tpstid, stcuid, stcdat

Następnie w module rejestry zakładamy nowy rejestr, a w polu nazwa tabeli wprowadzamy nazwę założonej tabeli. System będzie od nas żądać, aby
nazwa tabeli rozpoczynała się od "creg_". Jeśli system wykryje, że tabela rejestru jest założona w bazie, zapyta, czy dodać pozycje na podstawie
znalezionej tabeli.

Tworzenie raportu

Po utworzeniu tabeli w schema cregisters rozpoczynającej się od ciągu creg_ należy utworzyć raport np:

SELECT ('CREGISTER_ENTRY') AS clsnam, cd.id____ AS keyval, cd.*

FROM cregisters.creg_ddm_dokumenty cd

INNER JOIN cregisters.creg_archiv_formularz af ON cd.menuid = af.formularz

WHERE {FILTER_STRING} AND cd.is_del IS NOT true

{ORDER_BY}

{LIMIT}

Raport należy podlinkować do rejestru ustawiając w tabeli registers pole rep_id. W tabeli reports.reports dla rep_id = raportowi dla rejestru należy
ustawić is_sys = TRUE

Sumowanie oraz grupowanie

Lista pozycji rejestru obsługuje grupowanie oraz sumowanie zdefiniowane w raporcie. Do działania niezbędne jest użycie w zapytaniu SQL,
znacznika {ORDER_BY}.
Raport może zawierać grupowanie po kilku polach/kolumnach - należy je wpisać (rozdzielone przecinkiem) do sekcji "Grupowanie" na zakładce
"Definicja" edytora raportów.
Możliwe jest sumowanie wartości poszczególnych kolumn - należy je wpisać (rozdzielone przecinkiem) do sekcji "Sumowanie" na zakładce "Definicja"
edytora raportów.

Ważne tabele

WikiPrint - from Polar Technologies

4

register (klucz główny: id____)

register_entry (klucz głowny: id____ , klucz obcy:)

register_fields (klucz główny: id____, klucz obcy:)

register_links (klucz główny: id____, klucz obcy:)

Tabele:

• cregisters.register - lista rejestrów.

• cregisters.register_entry -

• cregisters.register_fields

• cregisters.register_links

Uwaga! Kluczem obcym w registers_entry referujacym do rejestru jest XXXX

Rejestr jako lista

w dokumencie

Definiujemy powiązanie rejestru z typem dokumentu (jeżeli ma to być lista a nie formularz to ustawiamy parametr collection na true):

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params)

VALUES ({cregisters.register.id____}, {types_of_documents.dctpid}, 'DOCUMENT', '{"collection":true}')

w zadaniu

Definiujemy powiązanie rejestru z typem zdarzenia:

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params) VALUES ({cregisters.register.id____}, -1, 'EVENT', '{"collection":true}')

(można zastępować EVENT innym typem zdarzenia: TODO, MEETING, PHONECALL).

w sprawie

Definiujemy powiązanie rejestru z kategorią spraw:

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params) VALUES ({cregisters.register.id____}, {dossiers.dos_id}, 'DOSS', '{"collection":true}')

Jeżeli w miejsce {dossiers.dos_id} wstawimy wartość -1, wówczas zakładka z listą pojawi się na każdej sprawie.

dodatkowe opcje

Jeżeli chcemy aby lista/zakładka pokazała się dopiero po dodaniu pierwszego wpisu to parametry należy dodatkowo ustawić parametr always_visible na
false.

{"collection":true,"always_visible":false}

Podrejestr w rejestrze

Aby zbudować strukturę hierarchiczną rejestru wystarczy zlinkować odpowiednio 2 wcześniej utworzone rejestry. Pierwszy ze wskazanych zacznie się
pojawiać jako lista rekordów w formatce rejestru nadrzędnego.

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params)

VALUES ({cregisters.register.id____}, {cregisters.register.id____}, 'CREGISTER', '{"collection":true}')

Uwaga! Id podrejestru jest wprowadzany w insercie jako pierwsze, następny jest id rejestru do którego będzie należeć podrejestr.

W raporcie w podrejestrze za filtrowanie rekordów odpowiada makro {FILTER_STRING}, które dokleja do zapytania warunek po atrybucie cre_id (cre_id
wskazuje na rekord rejestru nadrzędnego).

WikiPrint - from Polar Technologies

5

Definicja rejestru - parametry

Walidacja wpisu w rejestrze

Walidacja odbywa się po zapisaniu formularza (rekord jest już w bazie ale transakcja nie jest jeszcze zatwierdzona). Dane zostaną zapisane jeżeli
zapytanie SQL validatorQuery zwróci TRUE. W przeciwnym wypadku zmiany nie zostaną zapisane (ROLLBACK) i pokaże się komunikat o treści
zdefiniowanej w parametrze validatorMessage.

przykład:

{"validatorMessage":"Nieprawidłowe dane!","validatorQuery":"SELECT (data_urodzenia < now()) AND (strlen(pesel) = 11) FROM cregisters.creg_usc WHERE id____ = {PKEY_VALUE}"}

Konfiguracja wyglądu okna dialogowego

Kod należy wkleić do parametrów. Można łączyć go z innymi parametrami.

{

 "dialog": {

 "width": "600px",

 "height": "600px"

 }

}

Definicje pól dla rejestru

Formatowanie pól i formatki

Pola rejestrów można formatować za pomocą następujących znaczników: Przykładowe pole typu HTML, z określoną wielkością i lokalizacją. Parametry
można łączyć z innymi.

Duże pole edycyjne:

{

 "type": "html",

 "widget": {

 "width": "574px",

 "height": "540px",

 "top": "105px",

 "left": "10px"

 }

}

Małe pole z wyborem z drzewka wartości słownikowej:

{

 "widget": {

 "width": "270px",

 "top": "62px",

 "left": "10px"

 },

 "type": "dbtreeselector",

 "sql": "SELECT c.strcid AS keyval, c.prn_id, c.strnam AS name__, CASE WHEN (SELECT count(*) FROM cregisters.creg_structure_elements c2 WHERE c2.prn_id = c.strcid) > 0 THEN 'FOLDER' ELSE 'ITEM' END AS icon__ FROM cregisters.creg_structure_elements c WHERE c.is_del IS FALSE"

}

Akcje (javascript)

Możliwe jest przypisanie skrypu (javascript) dla akcji na polach formularza. np.:

{

 "onChange": "$('{DIALOG_NAME}_v51').value='123';"

}

WikiPrint - from Polar Technologies

6

Walidacja wartości w polach

przykłady:

-- liczba dowolnej długości

{"validator":"/^\d+$/"}

--kwota

"validator": "/^([0-9]*)[\\.,][0-9][0-9]$/"

-- godzina

{"validator": "/^([01]?[0-9]|2[0-3]):[0-5][0-9]$/"}

ustalenie wymagalności dla pola:

{"required":true}

Ustawianie wartości domyślnych

Jeżeli chcemy aby pole było listą wyboru, to definiujemy w parametrach (register_fields.params) domyślną wartość (defaultValue):

-- Id tworzącego dokument

{"defaultValue":"{SQL::SELECT adduid FROM documents WHERE doc_id = {doc_id}}"}

-- domyślne dane zalogowanego użytkownika

{"defaultValue":"{SQL::SELECT o.firnam || ' ' || o.lasnam || ' (' || COALESCE(o.orunsm, '') || ' - ' || o.ndenam || ')' AS wytworzyl FROM orgtree_view o WHERE o.usr_id = {LOGGED_USR_ID}}"}

-- przepisanie opisu sprawy do pola w rejestrze

{"defaultValue":"{SQL::SELECT dscrpt FROM processes WHERE prc_id::text = nullif('{prc_id}','')}"}

-- domyślna data

{"defaultValue": "{SQL::SELECT CURRENT_DATE}"}

-- numeracja wg schematu (wymagana funkcja get_counter)

{"value":"{SQL::select case when {cregisters.creg_usterki.numer}::text='' then 'U/' || get_counter(1,'U') else {cregisters.creg_usterki.numer} end}","enabled":false}

Możliwe jest też ustawienie wartości wyliczanej za każdym razem gdy dokonujemy zapisu rejestru (dla pól ukrytych):

-- Imię i nazwisko dokonującego zmian w rejestrze

{"value":"{SQL::select firnam || ' ' || lasnam from users where usr_id={LOGGED_USR_ID}}"}

1. defaultValue jest parsowane tylko dla formularza nowego wpisu w rejestrze (na akcji Open oraz Save).

value jest parsowane zawsze na akcji Save niezależnie od trybu (edycja, nowy) wyłącznie dla pól:

1. ukrytych poprzez definicję pola (register_fields.hidden = TRUE)

2. ukrytych poprzez parametr visible (register_fields.params = {"visible":false})

3. nieaktywnych (register_fields.params = {"enabled":false})

Pole jako lista wyboru

Jeżeli chcemy aby pole było listą wyboru, to definiujemy w parametrach (register_fields.params) zapytanie zwracające rekordy typu (klucz,wartość),
dodatkowo ustawiamy domyślną wartość (defaultValue):

{"sql":"SELECT usr_id, lasfir FROM orgtree_view WHERE is_del IS NOT TRUE ORDER BY lasfir", "defaultValue":"{SQL::SELECT adduid FROM documents WHERE doc_id = {doc_id}}"}

{"sql":"SELECT nazwa AS value, nazwa AS caption FROM cregisters.creg_slownik WHERE typ = 'PRZYCZYNA' ORDER BY nazwa"}

WikiPrint - from Polar Technologies

7

Parametry: sql, defaultValue, są objęte standardowym mechanizmem parsowania parametrów (tak jak np. w przypisaniach w workflow).

Listy połączone

Użycie znacznika pola, które jest listą wyboru, SQLu innej listy spowoduje jej automatyczne odświeżanie/filtrowanie.

przykład:

w rejestrze cregisters.creg_moj_rejestr, pole "grupa" jest zdefiniowana jako select z listą grup

{"sql":"SELECT grp_id,grpnam FROM groups"}

"pracownik" jest listą pracowników/użytkowników

{"sql":"SELECT usr_id,usrnam FROM users WHERE is_del IS NOT TRUE AND (CASE WHEN {cregisters.creg_moj_rejestr.grupa} = '' THEN true ELSE usr_id IN (SELECT usr_id FROM users_link_group WHERE grp_id = nullif({cregisters.creg_moj_rejestr.grupa},'')::int) END)"}

Taka konfiguracja spowoduje przeładowanie listy pracowników przy każdej zmianie grupy.

Pole tekstowe typu HTML

{"type":"html"}

Pole tekstowe typu ComboBox

{"type":"combobox","autoSearch":2,"sql":"SELECT usr_id,usrnam FROM users WHERE is_del IS NOT TRUE AND (firnam ~* E'^{SEARCH_TEXT}')"}

Znacznik {SEARCH_TEXT} zostanie zastąpiony wpisanym w pole tekstem

1. autoSearch - ilosc znaków po których wpisaniu zostanie uruchomione wyszukiwanie / podpowiadanie (wartość -1 spowoduje wyłączenie
automatycznego wyszukiwania i pokazanie ikony lupki)

Pole typu Lookup

Pole to wygląda jak ComboBox. Różnica polega na tym, że wyszukiwanie odbywa się tylko za pomocą "lupki", a wartością pola będzie dana pobrana z
bazy pod kluczem {valueField}. Wartość prezentowaną na formularzu określamy w parametrze {labelField}.

{"sql":"select usr_id, usrnam, 'USER' as clsnam FROM users WHERE {FILTER_STRING}","sql_filter":"firnam ~* E'^{SEARCH_TEXT}'","valueField":"usr_id","labelField":"usrnam"}

{"sql":"SELECT devcid, name__ || ' - ' || COALESCE(sernum) AS device FROM cregisters.creg_devices WHERE {FILTER_STRING}","sql_filter":"sernum ~* E'^{SEARCH_TEXT}' OR name__ ~* E'^{SEARCH_TEXT}'","valueField":"devcid","labelField":"device"}

{"sql":"SELECT contid, COALESCE(name_2, name_1) || ' ' || f_addr AS caption, 'CONTACT' as clsnam FROM contacts_view WHERE is_del IS FALSE AND {FILTER_STRING} ORDER BY caption","sql_filter":"name_1 ~* E'^{SEARCH_TEXT}' OR name_2 ~* E'^{SEARCH_TEXT}'","valueField":"contid","labelField":"caption"}

Kolumna clsnam w zapytaniu spowoduje pokazanie ikony "i" umożliwiającej otwarcie formularza powiązanego z danym clsnam (np. 'CONTACT' as
clsnam da możliwość otwarcia panelu klienta). Ikona pojawi się po kliknięciu na lupkę (jeśli wyszukanie zakończyło się sukcesem).
Znacznik {SEARCH_TEXT} zostanie zastąpiony wpisanym w pole tekstem
Znacznik {FILTER_STRING} zostanie zastąpiony wartością z parametru "sql_filter"

Pole typu wybór z drzewka

Wybór wartości następuje poprzez zaznaczenia węzła z drzewka a następnie zapamiętanie opisu węzła w polu. Drzewko definiujemy za pomocą SQL.
Dla przykładu niech posłuży drzewko magazynów dostępne poprzez słownik. Istotne jest aby kwerenda SQL zwracała odpowiednio nazwane pola
(poprzez aliasy).

Nazwa pola Opis

keyval Klucz główny

prn_id Klucz referujący do klucza głównego wskazujący na element nadrzędny

name Nazwa węzła

http://support.edokumenty.eu/trac/wiki/DeployerGuide/Customization#a3.5Parametry
http://support.edokumenty.eu/trac/wiki/DeployerGuide/Customization/ProcessAutomation

WikiPrint - from Polar Technologies

8

icon

Wyświetlana ikona. Można użyć słówa kluczowe jak FOLDER oraz ITEM,
które wskazują odpowiednio na węzeł grupujący (FOLDER) oraz np.
element końcowy struktury drzewa (ITEM). Przykład: foldery a w folderach
dokumenty

enable
Czy dany element jest aktywy. Jeśli nie ma tego atrybutu to domyślnie
każdy jest aktywny

{"type":"dbtreeselector", "sql":"SELECT wahaid AS keyval, prn_id, name__, 'FOLDER' AS icon__ FROM warehouses"}

Pole jako status

W definicji pola, w polu Alias wpisujemy "tpstid"

Disablowanie pola

Jeśli pole ma być tylko do odczytu to należy dla niego określić atrybut enabled:

{"enabled":false}

ToolBar

{"type":"toolbutton","icon":"new.gif","visible":1,"doRefresh":true,"onclick":["moj_skrypt.inc","MojaKlasa1","mojaFunkcja",{"parametr_1":"aqq","parametr_2":"{register_entry.adddat}"}]}

1. icon: plik ikony bez ścieżki która wskazuje domyślnie na ./public_html/framework/img/toolbarIcons/24x24/

Skrypt "app/edokumenty/scripts/moj_skrypt.inc"

1. doRefresh: wartość true spowoduje przeładowanie formularza wpisu w rejestrze

<?php

class MojaKlasa1 {

 public function __construct() {

 }

 public function mojaFunkcja($params) {

 $params = json_decode($params,TRUE);

 jscript::alert(json_encode($params));

 }

}

?>

Wywołanie / otwarcie formularza poprzez clsnam i keyval (np. otwarcie tego samego wpisu w nowym oknie czyli edycja):

{"type":"toolbutton","icon":"edit.gif","enabled":1,"doRefresh":true,"onclick":["","Application","openDialogByCls","","CREGISTER_ENTRY","{SQL::SELECT {cregisters.creg_przykladowy_rejestr.id____}}"]}

Usuń wpis z rejestru:

{"type":"toolbutton","icon":"del.gif","enabled":1,"doRefresh":true,"onclick":["","Application","openDialogByCls",{"mode":"del"},"CREGISTER_ENTRY","{SQL::SELECT {cregisters.creg_przykladowy_rejestr.id____}}"]}

Otwarcie dialoga z parametrami (można przekazać dowolne dane z rekordu rejestru). Poniższa definicja to przykład już samej wartości parametrów
JSON.

{

 "type": "toolbutton",

 "icon": "edit.gif",

WikiPrint - from Polar Technologies

9

 "visible": 1,

 "doRefresh": false,

 "onclick": [

 "nChangeElementsNumber2.inc",

 "nChangeElementsNumberInitializer",

 "init",

 {

 "parametr_1": "aqq",

 "parametr_2": "{cregisters.creg_n_elements.adddat}",

 "afterSubmit": "{AFTER_SUBMIT}"

 }

]

}

Filtrowanie listy

Dla rejestru można ustawić stały filtr w parametrach (cregisters.register.params)

{"FILTER_STRING":"is_del IS TRUE"}

Liczniki

Wykorzystując tabelkę i funkcję get_counter można generować własne numery dla pozycji rejestrów.

{"value":"{SQL::select case when {cregisters.creg_umowy_handlowe.nr_umowy}::text='' then user_workspace.get_nr_umowy('HO') else {cregisters.creg_umowy_handlowe.nr_umowy} end}","enabled":false}

Modyfikacje JSON bezpośrednio w bazie danych

Sposób na zmianę wartości jednego pola w obiekcie typu JSON (dla PostgreSQL v9.3+):

CREATE OR REPLACE FUNCTION "json_set_value"(

 "json" json,

 "key_to_set" TEXT,

 "value_to_set" anyelement

)

 RETURNS json

 LANGUAGE sql

 IMMUTABLE

 STRICT

AS $function$

SELECT COALESCE(

 (SELECT ('{' || string_agg(to_json("key") || ':' || "value", ',') || '}')

 FROM (SELECT *

 FROM json_each("json")

 WHERE "key" <> "key_to_set"

 UNION ALL

 SELECT "key_to_set", to_json("value_to_set")) AS "fields"),

 '{}'

)::json

$function$;

UPDATE cregisters.register_field SET params = json_set_value(params, 'doRefresh', true) WHERE id____ = 1;

UPDATE cregisters.register_field SET params = json_set_value(params, 'value', 'SQL::SELECT ''tekst "kolo"''') WHERE id____ = 1;

Uprawnienia do rejestrów

Prawo systemowe bswfms.cregisters daje dostęp do modułu Rejestrów oraz okna uruchamianego poprzez Shift+R. Prawo to nie daje możliwości
przeglądania (czytania wpisów) rejestrów (należy udostępnić enumeratywnie każdy z rejestrów). Prawo bswfms.system.cregisters_manage daje

WikiPrint - from Polar Technologies

10

możliwość zarządzania (tworzenie, usuwanie i modyfikacja definicji rejestrów) oraz przeglądania i modyfikacji wpisów we wszystkich rejestrach. Aby
udostępnić rejestr dla wybranej grupy osób należy w konfiguracji uprawnień wybrać osoby lub grupy i wskazać poziom udostępnienia. Rodzaje
uprawnień do rejestru:

1. Odczyt wszystkich (READ) – umożliwia przeglądanie/odczyt wszystkich wpisów w danym rejestrze

2. Odczyt powiązanych (READ_LINKED) - umożliwia przeglądanie/odczyt wpisów z kontekstu innego obiektu np. dokumentu, sprawy, itp.). Jeżeli
użytkownik posiada prawo do odczytu w obiekcie nadrzędnym, będzie miał również dostęp do danych z rejestru powiązanych z tym obiektem.

Kolejne uprawnienia działają w kontekście pierwszych dwóch. Np.: Aby zapisać/zmodyfikować wpis w rejestrze z poziomu dokumentu, do którego mamy
prawo zapisu, potrzebne są prawa: odczyt powiązanych oraz zapis.

1. Zapis (UPDATE) – umożliwia zapis/modyfikację wpisów w rejestrze

2. Usuwanie (DELETE) - umożliwia usuwanie wpisów z rejestru

3. Zmiana statusu (CHANGE_STATUS) - umożliwia modyfikację samego statusu dla wpisów w rejestrze (Uwaga! Wymaga również prawa Zapis)

Rekordy rejestrów podlegają blokadzie do zapisu w przypadku kiedy status rekordu jest FINAL lub ACCEPTED. Blokowane są również te rekordy
których element nadrzędny (skojarzony dokument lub nadrejestr) jest w statusie FINAL lub ACCEPTED. Dodatkowo można sterować własnością
{enabled} dla składowych rejestru:

PASEK ZADAŃ NAD LISTĄ

REKORD

PRZYCISK

Migracja rejestrów z innej bazy

Import rejestrów

Indywidualna zakładka w Rejestrach

System eDokumenty umożliwia tworzenie dla danego rejestru własny szablon z przyciskami w module Rejestry. W pierwszej kolejności tworzymy plik
xml o nazwie conf_ID.xml, gdzie ID to klucz z tabeli cregisters.register (id) w następującej lokalizacji :

/apps/edokumenty/var/cfg/cregisters/

i strukturze:

<?xml version="1.0" encoding="UTF-8"?>

<tabs>

 <tab label="{register.label_}" rep_id="ID">

 <buttons>

 <button>

 <id>new</id>

 <label>Nowy</label>

 <dscrpt>Nowy wpis</dscrpt>

 <onclick>

 App.openDialogByCls('CREGISTER_ENTRY', null,

 ({afterSubmit:'{AFTER_SUBMIT}', mode:'new',cregid:ID}).toJSONString())

 </onclick>

 <icon>new.gif</icon>

 </button>

 <button>

 <id>edit</id>

 <label>Edycja</label>

 <dscrpt>Edytuj wpis</dscrpt>

 <onclick>

 App.openDialogByCls('CREGISTER_ENTRY', {KEYVAL},

 ({afterSubmit:'{AFTER_SUBMIT}', mode:'edit',cregid:ID}).toJSONString())

 </onclick>

 <icon>edit.gif</icon>

 </button>

 <button>

https://market.edokumenty.eu/trac/wiki/UserGuide/AdvancedConfiguration/CustomRegisters/Import

WikiPrint - from Polar Technologies

11

 <id>delete</id>

 <label>Usuń</label>

 <dscrpt>Usuń</dscrpt>

 <onclick>

 App.openDialogByCls('CREGISTER_ENTRY', {KEYVAL},

 ({afterSubmit:'{AFTER_SUBMIT}', mode:'del',cregid:ID}}).toJSONString())

 </onclick>

 <icon>delete.gif</icon>

 </button>

 </buttons>

 </tab>

</tabs>

Dostosowanie:

W tabs: rep_id : ID raportu przypisanego do rejestru

W button Wartość dla cregid:ID ID rejestru dla, którego mają być wywołane dialogi.

(Opcjonalnie) W tabs ustawić label statycznie (domyślnie wartość pobierana z nazwy rejestru).

Po wykonaniu tych zmian można wstawić własne przyciski (np Custom Widget).

Przydatne konstrukcje i zapytania

-- użycie w parametrach do przycisków i pól wartości {DOC_ID} powoduje błąd po wejściu na rekord rejestru jeśli jest pusty. Aby temu zapobiec należy obłożyć {DOC_ID} konstukcją NULLIF i COALESCE.

select pprosm from documents where doc_id = COALESCE(NULLIF('{DOC_ID}',''),'0')::int

	Rejestry
	Tworzenie rejestru
	Tworzenie raportu
	Sumowanie oraz grupowanie

	Ważne tabele
	Rejestr jako lista
	w dokumencie
	w zadaniu
	w sprawie
	dodatkowe opcje

	Podrejestr w rejestrze
	Definicja rejestru - parametry
	Walidacja wpisu w rejestrze
	Konfiguracja wyglądu okna dialogowego

	Definicje pól dla rejestru
	Formatowanie pól i formatki
	Akcje (javascript)
	Walidacja wartości w polach
	Ustawianie wartości domyślnych
	Pole jako lista wyboru
	Listy połączone
	Pole tekstowe typu HTML
	Pole tekstowe typu ComboBox
	Pole typu Lookup
	Pole typu wybór z drzewka
	Pole jako status
	Disablowanie pola
	ToolBar

	Filtrowanie listy
	Liczniki
	Modyfikacje JSON bezpośrednio w bazie danych
	Uprawnienia do rejestrów
	Migracja rejestrów z innej bazy
	Indywidualna zakładka w Rejestrach
	Przydatne konstrukcje i zapytania

