
Wikiprint Book

Title: Rejestry

Subject: eDokumenty - elektroniczny system obiegu dokumentów, workflow i CRM -
DeployerGuide/AdvancedConfiguration/CustomRegisters

Version: 103

Date: 02/04/26 15:51:51

WikiPrint - from Polar Technologies

2

Table of Contents

Rejestry 3
Tworzenie rejestru 3
Tworzenie raportu 3
Ważne tabele 3
Rejestr jako lista w dokumencie 4
Rejestr jako lista w zadaniu 4
Rejestr jako lista w sprawie 4
Podrejestr w rejestrze 4
Definicja rejestru - parametry 4

Walidacja wpisu w rejestrze 4
Definicje pól dla rejestru 4

Walidacja wartości w polach 4
Ustawianie wartości domyślnych 5
Pole jako lista wyboru 5
Listy połączone 5
Pole tekstowe typu HTML 5
Pole tekstowe typu ComboBox 5
Pole typu Lookup 6
Pole jako status 6
Disablowanie pola 6
ToolBar 6

Filtrowanie listy 7
Modyfikacje JSON bezpośrednio w bazie danych 7
Migracja rejestrów z innej bazy 7
Przydatne konstrukcje i zapytania 7

WikiPrint - from Polar Technologies

3

Rejestry

Tworzenie rejestru

Aby założyć rejestr w module rejestry musimy rozpocząć od założenia tabeli. Tabelę tworzymy za pomocą komendy create table.

Przykład założenia tabeli

-- Table: cregisters.creg_r_imi

-- DROP TABLE cregisters.creg_r_imi;

CREATE TABLE cregisters.creg_r_imi

(

 nazwa character varying(250),

 ulica character varying(80),

 budnr character varying(10),

 kwota double precision

)

INHERITS (cregisters.register_entry)

WITH (

 OIDS=FALSE

);

ALTER TABLE cregisters.creg_r_imi OWNER TO edokumenty;

GRANT ALL ON TABLE cregisters.creg_r_imi TO edokumenty;

GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE cregisters.creg_r_imi TO http;

Uwaga ! Pola używane przez eDokumenty są dziedziczone - nie trzeba ich zakładać. Są to pola:

id____, cregid, uid___, is_del, adduid, adddat, lm_uid, lm_dat, doc_id, prc_id, cre_id, tpstid, stcuid, stcdat

Następnie w module rejestry zakładamy nowy rejestr, a w polu nazwa tabeli wprowadzamy nazwę założonej tabeli. System będzie od nas żądać, aby
nazwa tabeli rozpoczynała się od "creg_".

Tworzenie raportu

Po utworzeniu tabeli w schema cregisters rozpoczynającej się od ciągu creg_ należy utworzyć raport np:

SELECT ('CREGISTER_ENTRY') AS clsnam, cd.id____ AS keyval, cd.*

FROM cregisters.creg_ddm_dokumenty cd

INNER JOIN cregisters.creg_archiv_formularz af ON cd.menuid = af.formularz

WHERE {FILTER_STRING} AND cd.is_del IS NOT true

{ORDER_BY}

{LIMIT}

Raport należy podlinkować do rejestru ustawiając w tabeli registers pole rep_id. W tabeli reports.reports dla rep_id = raportowi dla rejestru należy
ustawić is_sys = TRUE

Ważne tabele

register (klucz główny: id____)

register_entry (klucz głowny: id____ , klucz obcy:)

register_fields (klucz główny: id____, klucz obcy:)

register_links (klucz główny: id____, klucz obcy:)

Tabele:

• cregisters.register - lista rejestrów.

• cregisters.register_entry -

WikiPrint - from Polar Technologies

4

• cregisters.register_fields

• cregisters.register_links

Uwaga! Kluczem obcym w registers_entry referujacym do rejestru jest XXXX

Rejestr jako lista w dokumencie

Definiujemy powiązanie rejestru z typem dokumentu (jeżeli ma to być lista a nie formularz to ustawiamy parametr collection na true):

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params)

VALUES ({cregisters.register.id____}, {types_of_documents.dctpid}, 'DOCUMENT', '{"collection":true}')

Rejestr jako lista w zadaniu

Definiujemy powiązanie rejestru z typem zdarzenia:

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params) VALUES ({cregisters.register.id____}, -1, 'EVENT', '{"collection":true}')

(można zastępować EVENT innym typem zdarzenia: TODO, MEETING, PHONECALL).

Rejestr jako lista w sprawie

Definiujemy powiązanie rejestru z kategorią spraw:

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params) VALUES ({cregisters.register.id____}, {dossiers.dos_id}, 'DOSS', '{"collection":true}')

Jeżeli w miejsce {dossiers.dos_id} wstawimy wartość -1, wówczas zakładka z listą pojawi się na każdej sprawie.

Podrejestr w rejestrze

Aby zbudować strukturę hierarchiczną rejestru wystarczy zlinkować odpowiednio 2 wcześniej utworzone rejestry. Pierwszy ze wskazanych zacznie się
pojawiać jako lista rekordów w formatce rejestru nadrzędnego.

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params)

VALUES ({cregisters.register.id____}, {cregisters.register.id____}, 'CREGISTER', '{"collection":true}')

Uwaga! Id podrejestru jest wprowadzany w insercie jako pierwsze, następny jest id rejestru do którego będzie należeć podrejestr.

W raporcie w podrejestrze za filtrowanie rekordów odpowiada makro {FILTER_STRING}, które dokleja do zapytania warunek po atrybucie cre_id (cre_id
wskazuje na rekord rejestru nadrzędnego).

Definicja rejestru - parametry

Walidacja wpisu w rejestrze

Walidacja odbywa się po zapisaniu formularza (rekord jest już w bazie ale transakcja nie jest jeszcze zatwierdzona). Dane zostaną zapisane jeżeli
zapytanie SQL validatorQuery zwróci TRUE. W przeciwnym wypadku zmiany nie zostaną zapisane (ROLLBACK) i pokaże się komunikat o treści
zdefiniowanej w parametrze validatorMessage.

przykład:

{"validatorMessage":"Nieprawidłowe dane!","validatorQuery":"SELECT (data_urodzenia < now()) AND (strlen(pesel) = 11) FROM cregisters.creg_usc WHERE id____ = {PKEY_VALUE}"}

Definicje pól dla rejestru

Walidacja wartości w polach

przykłady:

WikiPrint - from Polar Technologies

5

-- liczba dowolnej długości

{"validator":"/^\d+$/"}

-- kwota (np. 1111111,11)

{"validator":"/^\d{1,7}(?:[\.,]\d{1,2})?$/"}

ustalenie wymagalności dla pola:

{"required":true}

Ustawianie wartości domyślnych

Jeżeli chcemy aby pole było listą wyboru, to definiujemy w parametrach (register_fields.params) domyślną wartość (defaultValue):

-- Id tworzącego dokument

{"defaultValue":"{SQL::SELECT adduid FROM documents WHERE doc_id = {doc_id}}"}

-- domyślne dane zalogowanego użytkownika

{"defaultValue":"{SQL::SELECT o.firnam || ' ' || o.lasnam || ' (' || COALESCE(o.orunsm, '') || ' - ' || o.ndenam || ')' AS wytworzyl FROM orgtree_view o WHERE o.usr_id = {LOGGED_USR_ID}}"}

Możliwe jest też ustawienie wartości wyliczanej za każdym razem gdy dokonujemy zapisu rejestru (dla pól ukrytych):

-- Imię i nazwisko dokonującego zmian w rejestrze

{"value":"{SQL::select firnam || ' ' || lasnam from users where usr_id={LOGGED_USR_ID}}"}

1. defaultValue jest parsowane tylko dla formularza nowego wpisu w rejestrze (na akcji Open oraz Save).

value jest parsowane zawsze na akcji Save niezależnie od trybu (edycja, nowy) wyłącznie dla pól:

1. ukrytych poprzez definicję pola (register_fields.hidden = TRUE)

2. ukrytych poprzez parametr visible (register_fields.params = {"visible":false})

3. nieaktywnych (register_fields.params = {"enabled":false})

Pole jako lista wyboru

Jeżeli chcemy aby pole było listą wyboru, to definiujemy w parametrach (register_fields.params) zapytanie zwracające rekordy typu (klucz,wartość),
dodatkowo ustawiamy domyślną wartość (defaultValue):

{"sql":"SELECT usr_id,usrnam FROM users WHERE is_del IS NOT TRUE", "defaultValue":"{SQL::SELECT adduid FROM documents WHERE doc_id = {doc_id}}"}

Parametry: sql, defaultValue, są objęte standardowym mechanizmem parsowania parametrów (tak jak np. w przypisaniach w workflow).

Listy połączone

Użycie znacznika pola, które jest listą wyboru, SQLu innej listy spowoduje jej automatyczne odświeżanie/filtrowanie.
przykład: w rejestrze cregisters.creg_moj_rejestr, pole "grupa" jest zdefiniowana jako select z listą grup

{"sql":"SELECT grp_id,grpnam FROM groups"}

"pracownik" jest listą pracowników/użytkowników

{"sql":"SELECT usr_id,usrnam FROM users WHERE is_del IS NOT TRUE AND (CASE WHEN {cregisters.creg_moj_rejestr.grupa} = '' THEN true ELSE usr_id IN (SELECT usr_id FROM users_link_group WHERE grp_id = nullif({cregisters.creg_moj_rejestr.grupa},'')::int) END)"}

Taka konfiguracja spowoduje przeładowanie listy pracowników przy każdej zmianie grupy.

Pole tekstowe typu HTML

{"type":"html"}

Pole tekstowe typu ComboBox

http://support.edokumenty.eu/trac/wiki/DeployerGuide/Customization#a3.5Parametry
http://support.edokumenty.eu/trac/wiki/DeployerGuide/Customization/ProcessAutomation

WikiPrint - from Polar Technologies

6

{"type":"combobox","autoSearch":2,"sql":"SELECT usr_id,usrnam FROM users WHERE is_del IS NOT TRUE AND (firnam ~* E'^{SEARCH_TEXT}')"}

Znacznik {SEARCH_TEXT} zostanie zastąpiony wpisanym w pole tekstem

1. autoSearch - ilosc znaków po których wpisaniu zostanie uruchomione wyszukiwanie / podpowiadanie (wartość -1 spowoduje wyłączenie
automatycznego wyszukiwania i pokazanie ikony lupki)

Pole typu Lookup

Pole to wygląda jak ComboBox. Różnica polega na tym, że wyszukiwanie odbywa się tylko za pomocą "lupki", a wartością pola będzie dana pobrana z
bazy pod kluczem {valueField}. Wartość prezentowaną na formularzu określamy w parametrze {labelField}.

{"sql":"select usr_id,usrnam FROM users WHERE {FILTER_STRING}","sql_filter":"firnam ~* E'^{SEARCH_TEXT}'","valueField":"usr_id","labelField":"usrnam"}

{"sql":"SELECT devcid, name__ || ' - ' || COALESCE(sernum) AS device FROM cregisters.creg_devices WHERE {FILTER_STRING}","sql_filter":"sernum ~* E'^{SEARCH_TEXT}' OR name__ ~* E'^{SEARCH_TEXT}'","valueField":"devcid","labelField":"device"}

Znacznik {SEARCH_TEXT} zostanie zastąpiony wpisanym w pole tekstem
Znacznik {FILTER_STRING} zostanie zastąpiony wartością z parametru "sql_filter"

Pole jako status

W definicji pola, w polu Alias wpisujemy "tpstid"

Disablowanie pola

Jeśli pole ma być tylko do odczytu to należy dla niego określić atrybut enabled:

{"enabled":false}

ToolBar

{"type":"toolbutton","icon":"new.gif","visible":1,"doRefresh":true,"onclick":["moj_skrypt.inc","MojaKlasa1","mojaFunkcja",{"parametr_1":"aqq","parametr_2":"{register_entry.adddat}"}]}

1. icon: plik ikony bez ścieżki która wskazuje domyślnie na ./img/toolbarIcons/24x24/

Skrypt "app/edokumenty/scripts/moj_skrypt.inc"

1. doRefresh: wartość true spowoduje przeładowanie formularza wpisu w rejestrze

<?php

class MojaKlasa1 {

 public function __construct() {

 }

 public function mojaFunkcja($params) {

 $params = json_decode($params,TRUE);

 jscript::alert(json_encode($params));

 }

}

?>

Wywołanie / otwarcie formularza poprzez clsnam i keyval (np. otwarcie tego samego wpisu w nowym oknie czyli edycja):

{"type":"toolbutton","icon":"edit.gif","enabled":1,"onclick":["","Application","openDialogByCls","","CREGISTER_ENTRY","SQL::SELECT {cregisters.creg_przykladowy_rejestr.id____}"]}

Usuń wpis z rejestru:

{"type":"toolbutton","icon":"del.gif","enabled":1,"onclick":["","Application","openDialogByCls",{"mode":"del"},"CREGISTER_ENTRY","SQL::SELECT {cregisters.creg_przykladowy_rejestr.id____}"]}

WikiPrint - from Polar Technologies

7

Filtrowanie listy

Dla rejestru można ustawić stały filtr w parametrach (cregisters.register.params)

{"FILTER_STRING":"is_del IS TRUE"}

Modyfikacje JSON bezpośrednio w bazie danych

Sposób na zmianę wartości jednego pola w obiekcie typu JSON (dla PostgreSQL v9.3+):

CREATE OR REPLACE FUNCTION "json_set_value"(

 "json" json,

 "key_to_set" TEXT,

 "value_to_set" anyelement

)

 RETURNS json

 LANGUAGE sql

 IMMUTABLE

 STRICT

AS $function$

SELECT COALESCE(

 (SELECT ('{' || string_agg(to_json("key") || ':' || "value", ',') || '}')

 FROM (SELECT *

 FROM json_each("json")

 WHERE "key" <> "key_to_set"

 UNION ALL

 SELECT "key_to_set", to_json("value_to_set")) AS "fields"),

 '{}'

)::json

$function$;

UPDATE cregisters.register_field SET params = json_set_value(params, 'doRefresh', true) WHERE id____ = 1;

UPDATE cregisters.register_field SET params = json_set_value(params, 'value', 'SQL::SELECT ''tekst "kolo"''') WHERE id____ = 1;

Migracja rejestrów z innej bazy

Import rejestrów

Przydatne konstrukcje i zapytania

-- użycie w parametrach do przycisków i pól wartości {DOC_ID} powoduje błąd po wejściu na rekord rejestru jeśli jest pusty. Aby temu zapobiec należy obłożyć {DOC_ID} konstukcją NULLIF i COALESCE.

select pprosm from documents where doc_id = COALESCE(NULLIF('{DOC_ID}',''),'0')::int

https://market.edokumenty.eu/trac/wiki/UserGuide/AdvancedConfiguration/CustomRegisters/Import

	Rejestry
	Tworzenie rejestru
	Tworzenie raportu
	Ważne tabele
	Rejestr jako lista w dokumencie
	Rejestr jako lista w zadaniu
	Rejestr jako lista w sprawie
	Podrejestr w rejestrze
	Definicja rejestru - parametry
	Walidacja wpisu w rejestrze

	Definicje pól dla rejestru
	Walidacja wartości w polach
	Ustawianie wartości domyślnych
	Pole jako lista wyboru
	Listy połączone
	Pole tekstowe typu HTML
	Pole tekstowe typu ComboBox
	Pole typu Lookup
	Pole jako status
	Disablowanie pola
	ToolBar

	Filtrowanie listy
	Modyfikacje JSON bezpośrednio w bazie danych
	Migracja rejestrów z innej bazy
	Przydatne konstrukcje i zapytania

