
Wikiprint Book

Title: Rejestry

Subject: eDokumenty - elektroniczny system obiegu dokumentów, workflow i CRM -
DeployerGuide/AdvancedConfiguration/CustomRegisters

Version: 103

Date: 02/04/26 15:51:49

WikiPrint - from Polar Technologies

2

Table of Contents

Rejestry 3
Tworzenie rejestru 3
Tworzenie raportu 3
Ważne tabele 3
Rejestr jako lista w dokumencie 4
Rejestr jako lista w zadaniu 4
Rejestr jako lista w sprawie 4
Podrejestr w rejestrze 4
Definicja rejestru - parametry 4

Walidacja wpisu w rejestrze 4
Definicje pól dla rejestru 4

Walidacja wartości w polach 4
Ustawianie wartości domyślnych 5
Pole jako lista wyboru 5
Pole tekstowe typu HTML 5
Pole tekstowe typu ComboBox 5
Pole typu Lookup 5
Pole jako status 6
Disablowanie pola 6
ToolBar 6

Filtrowanie listy 6
Modyfikacje JSON bezpośrednio w bazie danych 6
Migracja rejestrów z innej bazy 7
Przydatne konstrukcje i zapytania 7

WikiPrint - from Polar Technologies

3

Rejestry

Tworzenie rejestru

Aby założyć rejestr w module rejestry musimy rozpocząć od założenia tabeli. Tabelę tworzymy za pomocą komendy create table.

Przykład założenia tabeli

-- Table: cregisters.creg_r_imi

-- DROP TABLE cregisters.creg_r_imi;

CREATE TABLE cregisters.creg_r_imi

(

 nazwa character varying(250),

 ulica character varying(80),

 budnr character varying(10),

 kwota double precision

)

INHERITS (cregisters.register_entry)

WITH (

 OIDS=FALSE

);

ALTER TABLE cregisters.creg_r_imi OWNER TO edokumenty;

GRANT ALL ON TABLE cregisters.creg_r_imi TO edokumenty;

GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE cregisters.creg_r_imi TO http;

Uwaga ! Pola używane przez eDokumenty są dziedziczone - nie trzeba ich zakładać. Są to pola:

id____, cregid, uid___, is_del, adduid, adddat, lm_uid, lm_dat, doc_id, prc_id, cre_id, tpstid, stcuid, stcdat

Następnie w module rejestry zakładamy nowy rejestr, a w polu nazwa tabeli wprowadzamy nazwę założonej tabeli. System będzie od nas żądać, aby
nazwa tabeli rozpoczynała się od "creg_".

Tworzenie raportu

Po utworzeniu tabeli w schema cregisters rozpoczynającej się od ciągu creg_ należy utworzyć raport np:

SELECT ('CREGISTER_ENTRY') AS clsnam, cd.id____ AS keyval, cd.*

FROM cregisters.creg_ddm_dokumenty cd

INNER JOIN cregisters.creg_archiv_formularz af ON cd.menuid = af.formularz

WHERE {FILTER_STRING} AND cd.is_del IS NOT true

{ORDER_BY}

{LIMIT}

Raport należy podlinkować do rejestru ustawiając w tabeli registers pole rep_id. W tabeli reports.reports dla rep_id = raportowi dla rejestru należy
ustawić is_sys = TRUE

Ważne tabele

register (klucz główny: id____)

register_entry (klucz głowny: id____ , klucz obcy:)

register_fields (klucz główny: id____, klucz obcy:)

register_links (klucz główny: id____, klucz obcy:)

Tabele:

• cregisters.register - lista rejestrów.

• cregisters.register_entry -

WikiPrint - from Polar Technologies

4

• cregisters.register_fields

• cregisters.register_links

Uwaga! Kluczem obcym w registers_entry referujacym do rejestru jest XXXX

Rejestr jako lista w dokumencie

Definiujemy powiązanie rejestru z typem dokumentu (jeżeli ma to być lista a nie formularz to ustawiamy parametr collection na true):

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params)

VALUES ({cregisters.register.id____}, {types_of_documents.dctpid}, 'DOCUMENT', '{"collection":true}')

Rejestr jako lista w zadaniu

Definiujemy powiązanie rejestru z typem zdarzenia:

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params) VALUES ({cregisters.register.id____}, -1, 'EVENT', '{"collection":true}')

(można zastępować EVENT innym typem zdarzenia: TODO, MEETING, PHONECALL).

Rejestr jako lista w sprawie

Definiujemy powiązanie rejestru z kategorią spraw:

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params) VALUES ({cregisters.register.id____}, {dossiers.dos_id}, 'DOSS', '{"collection":true}')

Jeżeli w miejsce {dossiers.dos_id} wstawimy wartość -1, wówczas zakładka z listą pojawi się na każdej sprawie.

Podrejestr w rejestrze

Aby zbudować strukturę hierarchiczną rejestru wystarczy zlinkować odpowiednio 2 wcześniej utworzone rejestry. Pierwszy ze wskazanych zacznie się
pojawiać jako lista rekordów w formatce rejestru nadrzędnego.

INSERT INTO cregisters.register_links (cregid, keyval, clsnam, params)

VALUES ({cregisters.register.id____}, {cregisters.register.id____}, 'CREGISTER', '{"collection":true}')

Uwaga! Id podrejestru jest wprowadzany w insercie jako pierwsze, następny jest id rejestru do którego będzie należeć podrejestr.

W raporcie w podrejestrze za filtrowanie rekordów odpowiada makro {FILTER_STRING}, które dokleja do zapytania warunek po atrybucie cre_id (cre_id
wskazuje na rekord rejestru nadrzędnego).

Definicja rejestru - parametry

Walidacja wpisu w rejestrze

Walidacja odbywa się po zapisaniu formularza (rekord jest już w bazie ale transakcja nie jest jeszcze zatwierdzona). Dane zostaną zapisane jeżeli
zapytanie SQL validatorQuery zwróci TRUE. W przeciwnym wypadku zmiany nie zostaną zapisane (ROLLBACK) i pokaże się komunikat o treści
zdefiniowanej w parametrze validatorMessage. przykład:

{"validatorMessage":"Nieprawidłowe dane!","validatorQuery":"SELECT (data_urodzenia < now()) AND (strlen(pesel) = 11) FROM cregisters.creg_usc WHERE id____ = {PKEY_VALUE}"}

Definicje pól dla rejestru

Walidacja wartości w polach

przykłady:

WikiPrint - from Polar Technologies

5

-- liczba dowolnej długości

{"validator":"/^\d+$/"}

-- kwota (np. 1111111,11)

{"validator":"/^\d{1,7}(?:[\.,]\d{1,2})?$/"}

ustalenie wymagalności dla pola:

{"required":true}

Ustawianie wartości domyślnych

Jeżeli chcemy aby pole było listą wyboru, to definiujemy w parametrach (register_fields.params) domyślną wartość (defaultValue):

-- Id tworzącego dokument

{"defaultValue":"{SQL::SELECT adduid FROM documents WHERE doc_id = {doc_id}}"}

-- domyślne dane zalogowanego użytkownika

{"defaultValue":"{SQL::SELECT o.firnam || ' ' || o.lasnam || ' (' || COALESCE(o.orunsm, '') || ' - ' || o.ndenam || ')' AS wytworzyl FROM orgtree_view o WHERE o.usr_id = {LOGGED_USR_ID}}"}

Możliwe jest też ustawienie wartości wyliczanej za każdym razem gdy dokonujemy zapisu rejestru (dla pól ukrytych):

-- Imię i nazwisko dokonującego zmian w rejestrze

{"value":"{SQL::select firnam || ' ' || lasnam from users where usr_id={LOGGED_USR_ID}}"}

1. defaultValue jest parsowane tylko dla formularza nowego wpisu w rejestrze (na akcji Open oraz Save).

value jest parsowane zawsze na akcji Save niezależnie od trybu (edycja, nowy) wyłącznie dla pól:

1. ukrytych poprzez definicję pola (register_fields.hidden = TRUE)

2. ukrytych poprzez parametr visible (register_fields.params = {"visible":false})

3. nieaktywnych (register_fields.params = {"enabled":false})

Pole jako lista wyboru

Jeżeli chcemy aby pole było listą wyboru, to definiujemy w parametrach (register_fields.params) zapytanie zwracające rekordy typu (klucz,wartość),
dodatkowo ustawiamy domyślną wartość (defaultValue):

{"sql":"SELECT usr_id,usrnam FROM users WHERE is_del IS NOT TRUE", "defaultValue":"{SQL::SELECT adduid FROM documents WHERE doc_id = {doc_id}}"}

Parametry: sql, defaultValue, są objęte standardowym mechanizmem parsowania parametrów (tak jak np. w przypisaniach w workflow).

Pole tekstowe typu HTML

{"type":"html"}

Pole tekstowe typu ComboBox

{"type":"combobox","autoSearch":2,"sql":"SELECT usr_id,usrnam FROM users WHERE is_del IS NOT TRUE AND (firnam ~* E'^{SEARCH_TEXT}')"}

Znacznik {SEARCH_TEXT} zostanie zastąpiony wpisanym w pole tekstem

1. autoSearch - ilosc znaków po których wpisaniu zostanie uruchomione wyszukiwanie / podpowiadanie (wartość -1 spowoduje wyłączenie
automatycznego wyszukiwania i pokazanie ikony lupki)

Pole typu Lookup

Pole to wygląda jak ComboBox. Różnica polega na tym, że wyszukiwanie odbywa się tylko za pomocą "lupki", a wartością pola będzie dana pobrana z
bazy pod kluczem {valueField}. Wartość prezentowaną na formularzu określamy w parametrze {labelField}.

http://support.edokumenty.eu/trac/wiki/DeployerGuide/Customization#a3.5Parametry
http://support.edokumenty.eu/trac/wiki/DeployerGuide/Customization/ProcessAutomation

WikiPrint - from Polar Technologies

6

{"sql":"select usr_id,usrnam FROM users WHERE {FILTER_STRING}","sql_filter":"firnam ~* E'^{SEARCH_TEXT}'","valueField":"usr_id","labelField":"usrnam"}

{"sql":"SELECT devcid, name__ || ' - ' || COALESCE(sernum) AS device FROM cregisters.creg_devices WHERE {FILTER_STRING}","sql_filter":"sernum ~* E'^{SEARCH_TEXT}' OR name__ ~* E'^{SEARCH_TEXT}'","valueField":"devcid","labelField":"device"}

Znacznik {SEARCH_TEXT} zostanie zastąpiony wpisanym w pole tekstem
Znacznik {FILTER_STRING} zostanie zastąpiony wartością z parametru "sql_filter"

Pole jako status

W definicji pola, w polu Alias wpisujemy "tpstid"

Disablowanie pola

Jeśli pole ma być tylko do odczytu to należy dla niego określić atrybut enabled:

{"enabled":false}

ToolBar

{"type":"toolbutton","icon":"new.gif","visible":1,"doRefresh":true,"onclick":["moj_skrypt.inc","MojaKlasa1","mojaFunkcja",{"parametr_1":"aqq","parametr_2":"{register_entry.adddat}"}]}

1. icon: plik ikony bez ścieżki która wskazuje domyślnie na ./img/toolbarIcons/24x24/

Skrypt "app/edokumenty/scripts/moj_skrypt.inc"

1. doRefresh: wartość true spowoduje przeładowanie formularza wpisu w rejestrze

<?php

class MojaKlasa1 {

 public function __construct() {

 }

 public function mojaFunkcja($params) {

 $params = json_decode($params,TRUE);

 jscript::alert(json_encode($params));

 }

}

?>

Wywołanie / otwarcie formularza poprzez clsnam i keyval (np. otwarcie tego samego wpisu w nowym oknie czyli edycja):

{"type":"toolbutton","icon":"edit.gif","enabled":1,"onclick":["","Application","openDialogByCls","","CREGISTER_ENTRY","SQL::SELECT {cregisters.creg_przykladowy_rejestr.id____}"]}

Usuń wpis z rejestru:

{"type":"toolbutton","icon":"del.gif","enabled":1,"onclick":["","Application","openDialogByCls",{"mode":"del"},"CREGISTER_ENTRY","SQL::SELECT {cregisters.creg_przykladowy_rejestr.id____}"]}

Filtrowanie listy

Dla rejestru można ustawić stały filtr w parametrach (cregisters.register.params)

{"FILTER_STRING":"is_del IS TRUE"}

Modyfikacje JSON bezpośrednio w bazie danych

Sposób na zmianę wartości jednego pola w obiekcie typu JSON (dla PostgreSQL v9.3+):

WikiPrint - from Polar Technologies

7

CREATE OR REPLACE FUNCTION "json_set_value"(

 "json" json,

 "key_to_set" TEXT,

 "value_to_set" anyelement

)

 RETURNS json

 LANGUAGE sql

 IMMUTABLE

 STRICT

AS $function$

SELECT COALESCE(

 (SELECT ('{' || string_agg(to_json("key") || ':' || "value", ',') || '}')

 FROM (SELECT *

 FROM json_each("json")

 WHERE "key" <> "key_to_set"

 UNION ALL

 SELECT "key_to_set", to_json("value_to_set")) AS "fields"),

 '{}'

)::json

$function$;

UPDATE cregisters.register_field SET params = json_set_value(params, 'doRefresh', true) WHERE id____ = 1;

UPDATE cregisters.register_field SET params = json_set_value(params, 'value', 'SQL::SELECT ''tekst "kolo"''') WHERE id____ = 1;

Migracja rejestrów z innej bazy

Import rejestrów

Przydatne konstrukcje i zapytania

-- użycie w parametrach do przycisków i pól wartości {DOC_ID} powoduje błąd po wejściu na rekord rejestru jeśli jest pusty. Aby temu zapobiec należy obłożyć {DOC_ID} konstukcją NULLIF i COALESCE.

select pprosm from documents where doc_id = COALESCE(NULLIF('{DOC_ID}',''),'0')::int

https://market.edokumenty.eu/trac/wiki/UserGuide/AdvancedConfiguration/CustomRegisters/Import

	Rejestry
	Tworzenie rejestru
	Tworzenie raportu
	Ważne tabele
	Rejestr jako lista w dokumencie
	Rejestr jako lista w zadaniu
	Rejestr jako lista w sprawie
	Podrejestr w rejestrze
	Definicja rejestru - parametry
	Walidacja wpisu w rejestrze

	Definicje pól dla rejestru
	Walidacja wartości w polach
	Ustawianie wartości domyślnych
	Pole jako lista wyboru
	Pole tekstowe typu HTML
	Pole tekstowe typu ComboBox
	Pole typu Lookup
	Pole jako status
	Disablowanie pola
	ToolBar

	Filtrowanie listy
	Modyfikacje JSON bezpośrednio w bazie danych
	Migracja rejestrów z innej bazy
	Przydatne konstrukcje i zapytania

